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1 Introduction

Applied as the image of an object is formed, adaptive optics techniques com-
pensate for degradations added along the path of the light from the object
being imaged. Image restoration (post-processing) tools are then used to
scrub the captured optical image even cleaner. The first phase is a massive
control problem. The second is a delicate inverse problem. Both adaptive
optics and image restoration demand sophisticated mathematics and state-
of-the-art computation.

Image restoration involves the removal or minimization of degradation
(blur, clutter, noise, etc.) in an image using a priori knowledge about the
degradation phenomena. Blind restoration is the process of estimating both
the true image and the blurring operator from the degraded image charac-
teristics, using only partial information about degradation sources and the
imaging system. Our main interest concerned optical image enhancement,
where the degradation involves a convolution process. Image restoration
techniques are also providing clearer views of objects.

The power of these tools is substantial. One of our simulations, for ex-
ample, shows them improving the resolution of a telescope from being barely
able to spot an object the size of a house trailer in earth’s orbit to detecting
a hand waving from the trailer’s window!

Testifying before two committees in Congress last year in support of the
Department of Defense’s basic research program, Principal Investigator (PI)
Plemmons outlined the varied uses of adaptive optics and image restoration
tools: “Our DoD research projects are driven in part by the satellite imag-
ing, identification, and classification program, and especially the need for
high technology missile defense systems. Applications to civilian technol-
ogy include astronomical and medical imaging... fluorescence microscopy in
three dimensions... deblurring images of the retina through the eyeball, [and]
remote sensing images of the earth for agricultural, law enforcement, and
geophysics purposes.”

One goal of the research was to develop fast algorithms that operate
in near real-time. Had sufficiently sophisticated hardware and software been
available, for example, the American pilot shot down two years ago in Bosnia
might have avoided the ground-based missile fired at him; the system would
have identified the missile threat from a satellite and then relayed the infor-
mation directly to defense systems on the pilot’s aircraft. In other settings,
such as a medical office or a criminal investigation, optical postprocessing



can be more leisurely, but time is still at a premium.

Adaptive optics compensation plays an essential role in current state-
of-the-art atmospheric telescope imaging technology. The ideal earth-based
astronomical telescope is built on bedrock, high on a remote mountain. The
solid foundation partially stabilizes the telescope against wind and other
potential causes of vibration, while the altitude and isolation minimize at-
mospheric degradation. The Hubble space telescope carries this logic to its
natural extreme, but even the Hubble’s accuracy is limited by the effects of
thermal stresses and other forces that shift the phase of the incoming light
ever so slightly.

Ideally, light from a distant object high above the earth’s atmosphere
arrives at a telescope’s mirror as a single planar wavefront. The only limit on
resolution should be diffraction by the telescope mirror aperture. In imaging
through the atmosphere, tiny local variations in the index of refraction of
the atmosphere induce small phase errors that make the incoming plane
wave look more like a sheet of crumpled paper. The mirror then adds phase
errors of its own; even a theoretically perfect mirror will be distorted by
thermal stresses, not to mention the effects of small vibrations in the telescope
structure.

In this setting, active and adaptive optics attempt to compensate for these
phase errors using as a reference the phase error in the image of a guide star,
either a bright natural star very near the target image or a “star” created
by directing a laser into the atmosphere. Guide stars are especially effective
against the degradation by atmospheric turbulence of images collected by
ground-based telescopes because they provide an estimate of the unknown
blurring operator. Furthermore, thermal distortion and gravity can induce
small deformations in lightweight mirrors.

Active optics corrects these very low frequency errors by delicately nudg-
ing the primary mirror with hydraulic actuators. Adaptive optics corrects
the higher frequency errors caused by atmospheric irregularities and telescope
vibration. The distortion measured using the guide star drives a control sys-
tem that adjusts a separate set of mirrors. (The primary mirror is too big to
respond fast enough.)

With adaptive optics, instruments like the 3.5-m telescope at the Starfire
Optical Range of the U.S. Air Force Philips Laboratory in New Mexico, can
partially correct the image before it is recorded. Note that this real-time
control requires extraordinarily high-speed computation — up to 10 billion
floating point operations per second.



Postprocessing further restores the adaptive optics recorded image to a
state even closer to perfection by filtering out any remaining noise and blur
that can be distinguished from the image. The classic tool is regularized
least squares; one of the newest techniques we investigated is based on the
solution of a nonlinear partial differential equation. Like adaptive optics,
both demand cutting-edge computation.

1.1 Adaptive Control of Deformable Mirrors: Acquir-
ing the Image

Many modern astronomical telescopes are now built with deformable mirrors
that can be adjusted dynamically. Real-time control of the separate actuators
of such a mirror can accommodate distinctly different sources of error, such
as wind shake and time-varying atmospheric distortion. Each source has its
own characteristic temporal frequency; those of wind shake, for example, are
typically much higher than those of atmospheric turbulence.

The key to adjusting the mirror actuators on the fly is to choose a basis set
of mirror deformations, known as mirror control modes, which best control
each disturbance at a bandwidth matched to its characteristic frequency. In
contrast, correcting all disturbances at a common bandwidth will either allow
high frequency errors to sneak through if this bandwidth is set too low, or add
unnecessary noise to the correction of low frequency errors if the bandwidth
is too high.

Brent Ellerbroek of Philips Laboratory, and PI Plemmons have devel-
oped a multiple bandwidth modal control strategy that can minimize mean
squared phase error in the image across multiple sources of error (see publi-
cations [1,9,17]). These technique advances previous approaches by enabling
the simultaneous optimization of both the mirror control modes and the as-
sociated control bandwidths without choosing in advance the basis set of
control modes. The optical performance of the system at a particular band-
width is characterized by a matrix. The optimal control modes could be
determined by finding the one unitary transformation that comes closest to
simultaneously diagonalizing all of these optical performance matrices.

However, the approximate simultaneous diagonalization of more than two
matrices is not an easy task to formulate algorithmically, and any such scheme
would be computationally expensive. Instead, we use a novel trace maximiza-
tion approach based on a hill climbing scheme relative to pairs of matrices



in order to minimize mean squared phase error. :

In particular, we have studied in publications [1] and [17] a non-smooth
optimization problem arising in adaptive optics, which involves the opti-
mal real-time control of deformable mirrors designed to compensate for at-
mospheric turbulence and other image degradation factors, such as wind—
induced telescope vibration. The surface shape of this mirror must change
rapidly to correct for time—varying optical distortions caused by these sources
of image degradation. One formulation of this problem yields a functional

FU) = 3 max{ (07 M50

to be maximized over orthogonal matrices U, where U and a fixed collec-
tion of n X n symmetric matrices M;. We consider the situation which can
arise in practical applications where the matrices M; are “nearly” pairwise
commutative. Besides giving useful bounds, results for this case lead to
a simple corollary providing a theoretical closed—form solution for globally
maximizing f if the M; are simultaneously diagonalizable. However, even
here conventional optimization methods for maximizing f are not practical
in this real-time environment. The general optimization problem is quite dif-
ficult and is approached using a heuristic Jacobi-like algorithm. Numerical
tests using the algorithm indicated that the performance of adaptive optics
systems, such as those of interest to the Air Force, can be improved by the
use of our Jacobi-like algorithm.

This scheme can show substantial improvement over single bandwidth
control. It lends itself to parallel implementation and nearly real-time com-
puting (see publication [17]).

1.2 Image Postprocessing: Cleaning Up the Image

The techniques of adaptive optics are helping ground-based sensors to capture
better, but hardly perfect, astronomical images. More mundane devices like
surveillance cameras are cursed from the start with gritty, low-resolution
images. In both settings, image restoration techniques can help obtain a
clearer picture by separating the image from the degradations.

Classic restoration techniques often model the received image as the sum
of noise and a blurring operator acting on the true image. (The blurring
operator is a convolution with the point-spread function that characterizes
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the aberrations.) These techniques seek to recover the correct image by
solving an ill-conditioned least squares problem, usually regularized through
the addition of some smoothness requirement to be satisfied by the restored
image.

This linear problem is a formidable computation because of the size of
the blurring operator — its dimension is the number of pixels in the image —
and its inherent ill-conditioning. Regularization can render the restoration
problem solvable in practice, by neutralizing some of the ill-conditioning,
but it also removes sharp edges and similar distinguishing features. Once
distinctive characteristics, for example, can become unrecognizable.

Leonid Rudin of Cognitech, Inc., and Stanley Osher of UCLA, formerly
of Cognitech, have developed a widely used alternative known as the total
variation (TV) technique because it minimizes the total variation of the image
instead of its second derivative. Rather than insisting on a completely smooth
image, TV requires only that it have bounded variation, permitting sharp
edges but eliminating spurious oscillations. They came to their approach
in part through methods used for tracking shock fronts in gas dynamics
calculations, a setting that also seeks to preserve sharp boundaries without
introducing extraneous detail.

The problem at the heart of a TV image restoration problem is equiv-
alent to a nonlinear partial differential equation (the Euler equation of the
constrained minimum variation problem). The restored image solves this
steady-state problem. In their original work, Rudin and Osher found that
steady-state solution by iterating in time from an appropriate initial con-
dition. More recently, Tony Chan of UCLA, Curt Vogel of Montana State
University, and PI Plemmons, have proposed preconditioned conjugate gra-
dient methods for iterating to the solution, at a much faster rate.

The down side of TV-based image restoration is its computational ex-
pense. For example, Rudin and Osher’s time-stepping scheme for solving the
Tv differential equation can be slowed by stability restrictions that force it
to take relatively small time steps.

In this respect, PI Plemmons and his colleagues James Nagy of Southern
Methodist University, Paul Pauca of Duke University, and Todd Torgersen
of Wake Forest have proposed a compromise: use TV methods to sharpen
the estimate of the blurring operator obtained from an auxiliary source like
a guide star, then apply quicker linear restoration algorithms to the image
(see publications [14] and [18]).

Since the blurring operator is localized, TV techniques can be applied to it
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fairly cheaply, thereby gaining from the ability of minimum total variation to
preserve sharp transitions without the expense of a complete TV restoration.
Using the TV estimate of the blurring operator, linear restoration is then
applied adaptively to subregions of the full image allowing subregions of the
image to converge at a more natural rate, a technique the authors call the
space-varying regularization (SVR) technique. This novel SVR method reduces
the possibility of excessive smoothing and magnification of noise during the
linear restoration phase.

PI Plemmons and his colleagues solve the linear restoration subproblems
iteratively using SVR. The challenge is to continue the iterations long enough
to amplify the components associated with the image but not so long that
the noise is amplified as well. By simultaneously monitoring the size of
the image components and the residual, or equation error, they can choose
a stopping criterion appropriate for the portion of the image under study.
This approach stops iterations early for a region with little spatial variation,
such as an image of empty sky, but lets them run longer for a busier region
that includes, say, a piece of the satellite or star under observation.

Simulations using the 3.5-m telescope at the Starfire Optical Range show
impressive improvements: combined with the multiple-bandwidth adaptive
optics control of Ellerbroek, Plemmons, and others, use of SVR strengthens
resolution by a factor of about 50. A telescope that can discern nothing
smaller than 30 meters at a range of 1000 km using its optics alone finds its
resolution improved to 20 centimeters when a combination of adaptive optics
and SVR postprocessing is used.

Many image restoration problems fall into the broad category of blind
deconvolution because it is necessary to estimate both the true image as well
as the blur from the degraded image using only partial information about
the blurring operator. Blind deconvolution approaches include those devel-
oped by Julian Christou of Phillips Laboratory and by Plemmons and his
colleagues Michael Ng of the Australian National University and Senzheng
Qiao of McMaster University (see publication [16]). These particular ap-
proaches couple constrained optimization with nonlinear conjugate gradient
methods. A major part of the PI’s recent image postprocessing work has
been concerned with developing new, effective blind deconvolution methods.

We have also investigated a projection-based conjugate gradient technique
with nonuniform regularization for multichannel (multiframe) restoration of
and object. Data corresponding to multiple point spread functions was also
taken into account. Numerical results for sequential as well as parallel im-
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plementations on the Air Force IBM SP2 at the Maui High Performance
Computing Center are given. The paper containing the results from this
recent study is currently being finalized.



2 Objectives

The objectives of this research project included the development of rigor-
ous mathematical models, computational algorithms and high performance
computer implementations. Specifically, the project was concerned with the
areas of on-line optimization computations for controlling deformable mir-
rors, and corresponding off-line computations in image reconstruction and
restoration. When an otherwise collimated, coherent beam of light encoun-
ters a turbulent flow field that includes density fluctuations, its optical wave-
front becomes aberrated causing the beam to be degraded. The interaction
of the fluid with the light is termed “Aero-Optics.” Our work to enhance the
quality of images has applications in defense, including the air borne laser
weapons program (ABL), and to civilian technology, including astronomical
and medical imaging.

The objectives of the adaptive optics phase of the AFOSR project were to
conduct rigorous mathematical research in the aero-optics areas of adaptive
closed-loop deformable mirror control and image reconstruction. Paralleliza-
tions of the computational algorithms were investigated and implemented on
the Air Force massively parallel SP2 at the Maui High Performance Comput-
ing Center. Computations in adaptive-optics research is being continued, in
collaboration with Dr. Brent Ellerbroek at the Air Force Phillips Laboratory,
on the topic of optimal closed-loop real-time deformable mirror control. Our
recent research was expanded to include 1) improved optimization algorithms
(see publications [9] and [17]), 2) methods for updating computations for the
imaging system parameters, in collaboration with Brent Ellerbroek and also
Moody Chu at NC State University, and 3) the investigation of data-massive
computations necessary for segmented mirrors with very many degrees of
freedom.

Also, iterative restoration methods are being studied with the purpose of
obtaining algorithms that are both computationally efficient and stable (see
publications [3-6], [11-15], and [18]). Work was expanded to include blind
deconvolution, which is of particular importance in aero-optics applications
(see publication [16]), multiframe restoration and the treatment of spatially
varying blur.

Research collaboration on these projects has continued with researchers
at Phillips Laboratory, Kirtland AFB, and at AFIT, Wright-Patterson AFB.



3 Accomplishments/New Findings

The research was concerned with major projects in astro-imaging. One
project concerns deformable mirror adaptive control studies in collabora-
tion with Dr. Brent Ellerbroek at the Air Force Phillips Laboratory Starfire
Optical Range. Specially designed deformable mirrors operating in a closed-
loop adaptive-optics system can partially compensate for the effects of atmo-
spheric turbulence. The systems detect the distortions using either a natural
guide star (point) image or a guide star artificially generated from the back
scatter of a laser generated beacon. We have used the massively parallel
IBM Scalable POWERparallel 2 (SP2) at the Air Force Maui High Perfor-
mance Computing Center (MHPCC) for simulation studies in order to better
understand the characteristics of our algorithms.

A second project concerned nonlinear iterative methods for image post-
processing computations. We further enhance restored image quality of our
restorations by use of nonlinear optimization methods, blind deconvolution,
and adaptive space-varying restoration using variational segmentation meth-
ods.

The aberration of light caused by the Earth’s atmosphere has been known
to be the limiting factor in aero-optics observations since at least 1730 when
Sir Isaac Newton mentioned it in his book “Opticks”. These aberrations are
a deformation of the incoming optical wavefront. The aberrations have two
major effects which limit observations through the atmosphere:

e The limiting of the angular resolution of telescopes to about 1 arc
second.

e A reduction in the central power density of the image.

The limit on the angular resolution means that a multi-million pound 8 meter
telescope without adaptive-optics has the same resolution of a 15cm amateur
telescope. The usual method now employed to correct for this problem is to
use a deformable mirror. Light entering a telescope is split into two parts:
one forms the image and the other goes to a wavefront sensor. The wavefront
information is then processed and piezo-electric crystals are used to deform
a mirror in the correct manner that acts as the corrective element. Figure 1
gives an overall diagram of a typical adaptive-optics (AO) closed-loop control
system.
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Figure 1: Typical AO System

In a paper which appeared in the J. Optical Soc. Amer. A, the PI has
helped to develop a theory with applications to closed-loop adaptive control
methods to adjust the shape of these mirrors in real-time. A second pa-
per, referenced as [17] in the Publications Section, will appear in the SIAM
J. on Optimization. Numerical tests using this algorithm indicate that in
the presence of windshake jitter, the performance of a closed-loop adaptive-
optics system can be improved by the selection of distinct and independently
optimized control bandwidths for separate modes of the wavefront distortion
profile. These results may be relevant, for example, for the adaptive-optics
system planned for the 8-meter Gemini-North telescope to be located on the
mountain of Mauna Kea in Hawaii, where both windshake and atmospheric
turbulence effects must be compensated to achieve the desired levels of opti-
cal system performance.

Furthermore, our efforts for improvement in optical image quality is at-
tempted in two steps, forming a hybrid method. The first step occurs as the
observed image is initially formed, as described above. The second stage of
compensating for the effects of atmospheric turbulence occurs off-line, and
consists of the processing step of image restoration. An image partially cor-
rected by the adaptive-optics procedure discussed above can generally be
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enhanced further by off-line computer image restoration. Our work here
concerns preconditioned iterative methods for the solution of certain large
ill-posed inverse problems, where the solution does not depend continuously
on the data. The image formation process can be modeled as:

9@)= [ [ hayis,0f(s,Odsdt +n(a,0)

where g(z,y) is the observed (degraded) image, f(z,y) is the true (original)
image (unknown), and n(z,y) is assumed to be additive, Gaussian noise.
Here, h(z,y;s,t) represents the blurring point spread function (PSF). Ap-
plications abound in science and engineering. Our particular application
concerns image restoration computations. Papers [3-6], [8], [11], [13-15] and
[18], referenced in the Publications Section, report some of our recent post-
processing work. The interest is on the development of fast algorithms and
their extension to iterative blind deconvolution, where the blurring oper-
ator as well as the image is to be estimated. Our work in [14] and [18]
concerned a new space-varying regularization approach, and associated tech-
niques for accelerating the convergence of iterative image postprocessing com-
putations. Denoising methods, including total variation minimization, fol-
lowed by segmentation-based preconditioning methods for minimum residual
conjugate gradient iterations, were investigated. Regularization is accom-
plished by segmenting the image into (smooth) segments and varying the
preconditioners across the segments. The method appears to work especially
well on images that are piecewise smooth. Our algorithm has computational
complexity of only O(¢n?logn), where n? is the number of pixels in the image
and £ is the number of segments used. Also, parallelization is straightforward.
Numerical tests are reported on both simulated and actual atmospheric imag-
ing problems. Comparisons were made with the case where segmentation is
not used. It was found that our approach is especially attractive for restor-
ing images with low signal-to-noise ratios, and that magnification of noise is
effectively suppressed in the iterations, leading to a numerically efficient and
robust regularized iterative restoration algorithm.

Our variational image restoration method used in publication [18] is de-
scribed next. If we let H denote the blurring operator and 7 the noise process,
then the image restoration problem with additive noise can be expressed as
a linear operator equation

g=Hf+n, (1)
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where g and the unknown f denote functions containing the information of
the recorded and original images, respectively. Note that when H = Z, the
identity operator, the image restoration problem means to extract the image
f from a noisy image g. This problem is usually referred to as the denoising
problem.

Let v and v denote two-dimensional variables. If H is a convolution
operator, as is often the case in optical imaging, then the operator acts
uniformly (i.e., in a spatially invariant manner) on f. Here, (1) can be

_written as
Hi(w) = [ hlu—0v)f()dv. (2)

The problem is to both deconvolve and denoise the recorded image during the
reconstruction process, and we refer to this as the denoising and deblurring
problem. In optical imaging, the kernel A in (2) is called the convolution
point spread function (PSF). The Fourier transform of h is called the optical
transfer function (OTF). After discretization of (1), the spatial operator H
defined by h in (2) is a matrix that we denote by H. Here, in the spatially
invariant case, H is a block Toeplitz matriz with Toeplitz blocks. Thus the
fast Fourier transform (FFT) can be used in computations involving H.

A classical approach employed for solving (1) is that of penalized least
squares, which is also called Tikhonov regularization in the inverse problems
literature. This requires minimization of the expression

7S = gll* + 2 (), (3)

where || - || denotes the norm on L?*(Q), a is a positive (regularization) pa-
rameter and the functional J(f) serves the purpose of stabilizing the least
squares problem and penalizing certain undesirable artifacts like spurious os-
cillations in the computed f. Various choices of J(f) can be made, including
ISf ||2, where S is some smoothing differential operator, or the identity. This
model leads to fast linear methods for computing f, and is often the method
of choice by practitioners. However the use of other norms such as the £;
norm, lead to nonlinear minimization methods which sometimes result in su-
perior enhancement of blocky, noisy images, but with added computational
cost. Such approaches are described next.

We use an image enhancement method based on solving a nonlinear PDE
constrained minimization problem where the function being minimized is the
Total Variation (TV) of the image f = f(z,y). We consider the following
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constrained minimization problem:
m)jn/Q |Vfldu  subject to ||Hf—gl|* =07 (4)

where Vf denotes the gradient of f, and o is the noise level. At a point
u = (z,y) in the image domain, f(u) = f(z,y), and so

Vi) =2+ 1 (5)

[ \Vfldu= [ /R2(e) + Filav)dedy ©)

is called the total variation norm of f. The minimization in (4) is a form of
regularization, a step necessary in solving most ill-posed inverse problems.
The TV method is especially effective for recovering a blocky, discontinuous,
function from noisy data.

Consider the following closely-related Tikhonov regularization problem
(3), where

The quantity

aJ(f) = [ |Vfldu. (7)

Here a is a positive regularization parameter which measures the trade-off
between a good fit and an oscillatory solution. This method corresponds
to the use of the £; norm in the discrete case. At a stationary point, the
gradient of (3) vanishes, giving:

Y ) \4
z(f)E’H(%f—g)—aV-<|—6;—])=O, u=(z,y) € Q. (8)
Due to the term 1/|V f|, (8) is a degenerate nonlinear second order diffu-
sion equation. The degeneracy can be alleviated by modifying the diffusion
coefficient. More precisely, let f be an approximation to f given by

kp(f) = \/Tﬁ g >0, (9)
Lo(£)f ==V - (5s(H)VF), (10)

and define X X
Rs(f)f = (H'H+als(f))f. (11)
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Then (8) becomes the following non-degenerate system
Rﬂ(f)f =H'g, u=(z,y) €Q, with u = (z,y) € 0. (12)

Various numerical schemes have been devised to obtain the minimizer of
the functional (7). For example Rudin and Osher suggested an explicit time
marching scheme. However, the time step must be chosen small. Thus the
number of iterations to optimal convergence can be quite large. Vogel and
Oman introduced a lagged diffusivity fized point iteration approach, which
we denote by FP, to solve (12). If Rs(f*), H and Lg denote the discretiza-
tion matrices of Rg(f¥), H and Lg, respectively, then the FP iteration will
produce a sequence of approximations {f*} to the solution f and can be
expressed as a sequence of systems of linear equations:

Ry(f*)f** = (H'H + aLg(f*))f**' = H'g,  k=0,1,.. (13)

In the denoising case, numerical experiments cited by Vogel and Oman in-
dicated that the FP iteration method often gives a faster convergence rate
than the time marching method, with overall greater speed for the entire pro-
cess. Note that in (13), obtaining f*¥*! from f* requires one to solve a large
linear system with coefficient matrix H*H + aLg(f*). For deconvolution, H
is block Toeplitz with Toeplitz blocks. In any case, the matrix aLg(f*) is
a 2-D nonconstant Laplacian with five bands. Its spectrum can vary widely
over the outer iterations, i.e. with the index k.

A disadvantage of experimentally obtained data sets representing the
PSF's (obtained, for example, using guide stars) is that they are also subject
to degradations caused by noise during the image formation process. Thus,
removal of such degradations may be necessary prior to any computations
using the PSF in the image restoration postprocessing step. We use in pub-
lications [14,18] Tv-based denoising of the PSF whose model is formulated
as

s=h+n,

where h is the blur produced by the atmospheric turbulence on a single point,
and s is the actual measurement or observed PSF. For the denoising problem,
H*H = I, so that the coefficient matrix in (13) is a sum of the identity
matrix and Lg(f*). TV denoising of the PSF can be accomplished with little
extra computation since point spread functions h for optical imaging can

14




usually be treated as having small extent. Thus, the cost of preprocessing
the PSF is much less than that of deblurring f by TV methods. Again, our
approach to the deblurring step is considered in publications [14] and [18],
where numerically efficient and stable preconditioned iterative regularization
methods are given.

GRA Paul Pauca was added to the grant in 1995. Mr. Pauca was actively
involved with the research, including parallel programming support on the
400 node SP2. He was a co-author on two papers on image post-processing
(see publications [14] and [18]), and has further helped by developing a Par-
allel Toolbox for MATLAB. This toolbox can also facilitate various adaptive-
optics simulations. Information on the toolbox and the software system has
been made available on the World Wide Web at:

http://www.cs.duke.edu/~pauca,/research.html.

In addition Mr. Pauca is completing a paper on multichannel restoration for
optical image data as a part of his current doctoral work.

Tests and analysis by the GRA on data provided by the Phillips Air Force
Laboratory using our newly developed Multi-Level preconditioned conjugate
gradient SVR method in combination with our TV-denoising scheme outlined
above have given quite satisfactory results, and have been reported in pub-
lications [14] and [18]. The method is nonlinear, matrix-free and uses fast
transform methods with a total order of O(¢n?logn) where n? is the number
of pixels in the image and ¢ << n. Thus, our code can handle large-scale
restorations with considerable savings in computation time. Comparisons
were made with other restoration approaches, including the Total Variation
(Tv) method using nonlinear PDE models.

A sample restoration of a ground-based image of a satellite is given next.
In this example a 256 x 256 image is considered. Specifically, the true object is
an ocean reconnaissance satellite. A computer simulation algorithm was used
to produce an image of the satellite, shown in Figure 2 (left), as it would be
observed from a ground-based telescope using adaptive-optics compensation.
The satellite was modeled as being 12 meters in length and in an orbit 500
kilometers above the surface of the earth. The charge-coupled device (CCD)
for forming the image was a 65,536 pixel square array. CCD root-mean-
square read-out noise variance was fixed at 15 microns per pixel to reflect
a realistic state-of-the-art detector. Our computed restoration is shown in
Figure 2 (right).
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Figure 2: Degraded Image (left) and Restored Image (right).

4 Status of Effort at Expiration of Grant

Our research was concerned with several major projects in imaging. The first
project concerned deformable mirror control in work with Dr. Brent Eller-
broek at the Air Force Phillips Laboratory. A second aspect of our research
concerned nonlinear iterative methods for image post-processing computa-
tions. We are using the PI’s account on the massively parallel SP2 at the AF
Maui High Performance Computing Center for the parallel implementations.
Our methods can handle large-scale restorations of Air Force data with con-
siderable savings in computation time. We have further enhanced restored
image quality by use of nonlinear optimization methods.

A recent phase of our work on image postprocessing involves the study of
iterative blind deconvolution methods for image restoration. Blind deconvo-
lution is the process of estimating both the true image and the blur from the
degraded image characteristics, using partial information about the imaging
system. Dr. Julian Christou from the AF Phillips Lab, Kirtland, reports
in that “Experience with the adaptive-optics system at the Starfire Optical
Range has shown that the point spread function (PSF) is non-uniform and
varies both spatially and temporally as well as being object dependent. Be-
cause of this, the application of standard linear and nonlinear deconvolution
algorithms make it difficult to deconvolve out the PSF in order to restore the
image.” This is especially significant in aero-optics postprocessing methods
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where PSFS are generated using guide stars artificially generated from the
back scatter of laser generated beacons. For blind image deconvolution we

can write
g=hx*f+n, (14)

where % denotes the convolution operator. The standard deconvolution prob-
lem is to recover the image f from (14), given the observed image g and
the blurring operator h. Iterative blind deconvolution methods begin with
a knowledge-based (positivity, finite support) estimate for f, “deconvolve”
g = hx f to estimate h, and then iterate in an alternating fashion to im-
prove the estimates for both f and h. Our purpose was to apply variational
segmentation to the image and then to minimize the functional

hx f = gl2 + cs (f) + B (h) (15)

over both f and h. Here the parameters o; and §; were chosen based upon
the level of smoothness in segment i. Both least squares and total variation
norms were considered for the penalty operator J(f), while the total variation
norm will be used for defining the operator, J(h). This choice is based in
part on the small extent of the PSF h and its Gaussian form. Results thus far
look very promising. The additional feature of estimating the PSF as well as
deblurring the image in blind deconvolution adds another level of difficulty
to the parallelization process, leading to some exciting challenges.

Activities for this grant included visits to Phillips Laboratory, Kirtland
AFB, NM, and to Wright Laboratory, Wright-Patterson AFB, OH. Eighteen
papers were published or submitted and twenty-eight presentations made
during the 3 year grant period. An abstract including color images and
graphics, “Leading Edge Methods in Optical Imaging”, was prepared for the
DOD publication Success Stories in High Performance Computing. In ad-
dition, testimony was prepared and presented in support of the FY 1997
Appropriations for the Department of Defense to the U.S. House of Rep-
resentatives Subcommittee on National Security chaired by Representative
C.W. Bill Young, House Committee on Appropriations, and to the U.S. Sen-
ate Subcommittee on Defense chaired by Senator Ted Stevens, Senate Com-
mittee on Appropriations.

A description of the status of this AFOSR work, including color images,
graphics and multi-media animations, is on our Web page at:

http://www.mthcsc.wfu.edu/~plemmons/afres.
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As we move toward the new millennium, the research results produced
under this grant may very well have important impacts on science and engi-
neering as part of a continuing development of the computational foundations
of aero-optics technology. Packaging the results of our research into reliable
software will further facilitate the effective and timely transfer of new knowl-
edge gained here to DOD laboratories, other universities, and to industrial
organizations. Some promising results and new ideas have been put for-
ward and they indicate considerable potential for further progress in solving
these important imaging problems in an efficient and stable way on modern
computer architectures. E

To summarize this Final Report, our research has concerned the major
topics of 1) deformable mirror control computations in aero-optics, and 2)
fast algorithms for image post-processing. Both areas demand sophisticated

- mathematics and state-of-the-art computation.
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5 Personnel Supported by Grant

¢ PI: Robert J. Plemmons. Z. Smith Reynolds Professor, Wake Forest
University.

e GRA: Victor Paul Pauca. Paul has completed his B.S. and M.S. de-
grees in Computer Science at Wake Forest University. He is enrolled
in the Ph.D. program in Computer Science at Duke University, and
has continued this work with PI Plemmons as part of his dissertation
research.

6 Publications

Most of the papers listed below can be found on our Web page at:

http://www.mthesc.wfu.edu/~plemmons/afres.
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[15] R. Plemmons, Iterative numerical methods for imaging through turbu-
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[16] M. Ng, R. Plemmons and S. Qiao, Regularized blind deconvolution using
recursive inverse filtering, Proc. HK97 Conference on Scientific Com-
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7 Interactions and Transitions

7.1 Presentations

e Title: Least Squares Methods in Imaging
Organization: AFOSR Grantees Conference
Place: Phillips AF Lab., Albuquerque, NM
Date: May, 1994

o Title: Computations in Imaging Restoration
Organization: SIAM Conference
Place: Salt Lake City, UT
Date: June, 1994

e Title: Iterative Deconvolution _
Organization: SPIE International Conference
Place: San Diego, CA
Date: July, 1994

e Title: Some Computations in Atmospheric Imaging
Organization: IFIPS International Conference, Plenary Talk
Place: Raleigh, NC
Date: November, 1994

e Title: Mathematics in Image Reconstruction and Restoration
Organization: SEAS-SIAM Conference
Place: Charleston, SC
Date: March, 1995

e Title: Matrix Methods in Adaptive Optics
Organization: Technion International Matrix Theory Conference

Place: Haifa, Israel
Date: May, 1995

o Title: Iterative Methods for Image Restoration
Organization: Athens University, Colloquium Talk
Place: Athens, Greece
Date: June, 1995

e Title: Computations in Aero-Optical Imaging
Organization: AFOSR Grantees Meeting
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Place: Albuquerque, NM
Date: June, 1995

Title: Iterative Deconvolution

Organization: SPIE International Conference
Place: San Diego, CA

Date: July, 1995

Title: Fast Algorithms for Optical Imaging
Organization: AFOSR Workshop on Aero-Optics
Place: Phillips Laboratory, Kirtland AFB, NM
Date: July, 1995

Title: Mathematics in Image Processing
Organization: SIAM Annual Meeting
Place: Charlotte, NC

Date: October, 1995

Title: Nonlinear and Space-Varying Methods in Image Reconstruction
Organization: STAM National Graduate Student Conference

Invited Presentation by GRA Paul Pauca

Place: Clemson, SC

Date: April, 1996

Title: Testimony on DOD FY 97 Appropriations for Mathematical Sci-
ences Research

Organization: U.S. House of Representatives Subcommittee on Na-
tional Security

Place: Washington, DC

Date: May, 1996

Title: Nonlinear and Adaptive Methods in Image Processing
Organization: Workshop on Image Processing

Place: Hong Kong, China (Chinese University of Hong Kong)
Date: May, 1996

Title: Computations in Aero-Optics

Organization: AFOSR Grantees Meeting on Comp. and Phys. Math.
Place: Wright Laboratory, Wright-Patterson AFB, OH

Date: June, 1996
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e Title: Testimony on DOD FY 97 Appropriations for Mathematical
Sciences Research

Organization: U.S. Senate Subcommittee on DOD Appropriations
Place: Washington, DC

- Date: June, 1996

Title: A Parallel Toolbox for MATLAB

Organization: Albuquerque Resource Center, Univ. New Mexico
Presentation by GRA Paul Pauca

Place: Albuquerque, NM

Date: July, 1996

Title: Structured Problems in Optical Imaging

Organization: Conf. on Structured Problems in Image and Signal Pro-
cessing

Place: Santa Barbara, CA

Date: August, 1996

Title: Inverse Problems in Optical Imaging

Organization: Hellenic Inter. Conference on Scientific Computing
Place: Athens, Greece

Date: September, 1996

Title: Blind Deconvolution
Organization: University of Crete
Place: Crete, Greece

Date: October, 1996

Title: Optical Imaging for Tracking Missiles

Organization: Air Force Workshop on Airborne Laser Weapons
Place: Albuquerque (Phillips AF Lab), New Mexico

Date: October, 1996

Title: Space Varying Regularization in Optical Imagery
Organization: Scientific Computing Group, Computer Science Dept.
Presentation by GRA Paul Pauca

Place: Duke University, North Carolina

Date: October, 1996
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e Title: Computations in Optical Imaging
Organization: IMA Conference on Signal Processing
Place: Warwick, England
Date: December, 1996

e Title: Numerical Linear Algebra in Optical Imaging
Organization: Inter. Conference on Computational Mathematics
Place: Rio de Janeiro, Brazil
Date: January, 1997

e Title: A Matrix Optimization Problem in Adaptive Optics
Organization: Workshop on Numerical Methods in Optimization
Place: Curitiba, Brazil '

Date: January, 1997

e Title: Regularized Blind Deconvolution Using Recursive Filtering
Organization: Workshop on Scientific Computing
Place: Hong Kong, China
Date: March, 1997 .

e Title: Optimization Methods in Aero-Optics
Organization: Workshop on Optimization and Numerical Methods
Place: Beijing, China
Date: March, 1997

e Title: Large-Scale Computations in Optical Imaging
Organization: SEAS-SIAM Annual Meeting
Place: Raleigh, NC
Date: April, 1997

7.2 Collaborative Research and Transitions at Air
Force Laboratories

Activities for this grant included visits to Phillips Laboratory, Kirtland AFB,
NM and to Wright Laboratory, Wright-Patterson AFB, OH. The PI has been
in continuous contact with researchers at the Air Force Phillips Laboratory,
Kirtland AFB, NM. The primary contact at Phillips Laboratory is Dr. Brent
Ellerbroek at the Starfire Optical Range. His work is also supported by
the AFOSR and we are collaborating on research involving a closed-loop
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adaptive-optics system. In one paper the authors have helped to develop
a theory with possible applications for closed-loop adaptive control meth-
ods to adjust the shape of these mirrors in real-time. A second paper has
been completed. An abstract, “Leading Edge Methods in Optical Imaging”,
was prepared with Dr. Ellerbroek for the DOD publication Success Stories
in High Performance Computing - 1996. Such collaboration is continuing,
and a project involving minimal variance estimators in adaptive optics is in
progress. Dr. Ellerbroek has also supplied us with Air Force satellite image
data for tests with our image post-processing work. We are also interacting
with Dr. Julian Christou and Dr. Donald Washburn at the AF PLK on blind
deconvolution and the air borne laser weapons program, respectively. Con-
tacts at Wright-Patterson AFB are Air Force Dr. Michael Roggemann and
Dr. Byron Welsh.

Technology transfer of our work in relation to the projects at Air Force
Laboratories included research on ground-based imaging of satellites, and
related aero-optics activities. The PI has also participated in three AFOSR
workshops at the Laboratories: 1) the Aero-Optics and Image Reconstruction
Workshop concerning air borne laser weapons development (ABL), 2) the
Smart Sensors Workshop concerning remote sensing for wide angle satellite
surveillance, where the satellite systems will have on-board image processing
capabilities when deployed, and 3) a second ABL Workshop concerning recent
trends in missile tracking for the air born laser weapons program. Much
of our work in this project concerned real-time adaptive filtering methods.
Applications include closed-loop active noise (vibration) cancellation, with
the potential for stabilizing firing pads for the air borne laser weapons.

In addition to the Air Force applications just described, potential technol-
ogy transfer of our research on these imaging projects to civilian technology
include astronomical and medical imaging, and remote sensing for commer-
cial purposes. In astronomical imaging there is technology transfer to the
Gemini 8-meter telescope international project and the astronomical com-
munity at large. Medical imaging applications of the adaptive-optics work
include fluorescence microscopy in three dimensions, and the use of low en-
ergy laser beatons as an aid in deblurring images of the retina through the
eyeball. Our image post-processing methods can also be applied to enhancing
satellite images of the earth for agricultural, law enforcement, and geophys-
ical purposes.
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8 Inventions or Patent Disclosures

None. The research sponsored by the AFOSR under this grant con-
cerned the development of rigorous mathematical models, computational al-
gorithms and high performance computer software implementations that are
readily available to the DoD and the private sector.
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